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ON THE GENERAL CORRESPONDENCE BETWEEN FIELD THEORIES

AND THE THEORIES OF DIRECT INTERPARTICLE ACTION* '

B
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ABSTRACT

It is well known that classical electrodynamics can be described both as
a field theory and as a theory of diréét interparticle action. 1In the present
paper it is shown that, provided certaiu general cﬁnditions are satisfied, fields
of arbitrary spiﬁ have their counterparts in "direct particle fields'". This
correspondence betweea the two formalisms is established in the Riemannian space-

tine used for general relativity.
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. : " 1, INTRODUCTION

The two fundamental interactions of classical physics, electro dynamics and
gravitation, have been described in two different ways. One makes use of the concept
of direct interactions between pairs of particles, while the other involves interactions

between particles and fields. Historically the former came first. Newton's law of
PR

gravitation was stated as a law of action at a distance between pairs of material ./

particles. This was followed by a similar law in electro dynamics - the Coulomb law.

However, Coulomb's law did not have the same success in electro dynamics as Newton's law

i

“had 1in gravitation. The law failed in giving an adequate description of interactioﬁ

between rapldly moving charges. The reason for failure lay in the concept of instéhtaneou

action at a distance., As early as in 1845, Gauss recognized this:and went on to suggest

that the law be modified to make the action travel at a finite speed such as the speed

~

of light.

The impasse’' in electrodynamics was, however, resolyed in an altogether diffe;ent
manner, In 1876 Maxwell proposed the theory of electromagnetic fields. According :
to this thepry, charges interact with each other through an independent entity called
the electromagnetic field. The disturbances propagate through such fields with a
characteristic speed, the speed of 1light,

The success of Maxwell's theory established the field comcept inm physics.
Furthermore, with the advent of special relativity, it bacame clear that the concept of
ingtantaneous action at a distance is untenable. ZEven Newton's law of gravitation
had to be modified. Einstein's efforts in this direction led him to the general theory
of relativity. Although general relativity is an unusual theory in many respects, it
is closer to the "field" point of view than to the "action at a distance" point of view.

Action at a.distance was, however, revived by several theoretical physicists in
tﬁis century. The work of Schwarzschild (1903), Tetrode (1922) and Fokker (1929,a,1929b,

1932) gave a mathematical formulation of Gauss's idea of delayed action at a distance,
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Suéh a formulation was necessérily time —- symmetric and appeared, at first, inadequate

to describe the time-asymmetric pheromena such as. electromagnetic radiation. This
difficulty was resolved by Wheeler and Feynman (1945, 1949) who pointed out that

such phenomena can be accounted for in a "perfectly absorbing" Qniversg. The cosmologicai
implicatioﬁs of the Wheeler~Feynman theory have also been subsequently investigated,

with Interesting results., (cf Hogarth 1962, Hoyle and Narlikar 1963). These o

7
’

considerations have shown.that the concept of direct intérparticie,action can be made
to work in classical eléctroéynamicsy

There 1is, however, nothing speclal about electrodynamics. If we want to reinstate
the concept of direct interparticle actién on an equal footing with field theory in
classical physics, we éhould be able to generalize this result to other interactiqhs.

More specifically, we ask the following question: "Given a field theoretic description

for an interaction, can we formulate an analogous description in terms of direct
interparticle action?" Here we confine ourselves to the formal aspects of this p{g&lem,

and will not conslder such things as the absorber theory of radiation. In the foligging

section we 1llustrate these formal aspects with the familiar example of electrodyﬁ§§>¢§f

In the subsequent section we will generélize the result to fields of arbitary spin,

2, CLASSICAL ELECTRODYNAMICS

Classical electromagnetic field theory can be derived from an action principle.

-

_ The action is given by

. . ‘ .. {

| - -
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lere Al is the &-potential and Foy the corresponding electromagnetic field. K?”;“and e

ere the mass and charge of a typical partlicle, The first temm is purely gravitational

and leads to the Einstein tensor of general relativity. [Throughout this discussion we
shall use the Einstein cescription of gravitation]. G is the constant of gravitation.
The velocity of light is taken to be unity. The second and fourth terms in (1) involve

integrals over the world lines of particles. The second term arises from the inertia
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of the particle while toe fourth term describes the interaction of the charge with
the field. The third term contains no information about particles; it is porely a
field term, |
| The formal aspects of the theory are all contained in the above action principle.

The relevant information is obtained by requiring that the change in Jf,be zero for
emall variations of various quantities. In effect there are the following variatioﬂéih

[a] The variation of particle world lines leads to their equation of motion, |
The fourth term in (1) gives the Lorentz force formula.

[b] The variation of the Ai leads to the Maxwell equations of the electromagnetic
field. The last two terms in (1) contribute in this variation.

[c] The variation of g, ik leads to the gravitational equations. The electromagnetic

T

energy-momantum tensor is contributed by the third term.

The corresponqing direct interparticle action is given by

N

’ - i s \
J = ,BT&desdﬁx- ij da - ZZ lf'lfeaﬁ(,..—jf&;'\.;sc{a"db, G

a< &
The first two terms Iin (2) are the same as in (1). There is no term involving

field quantities, however, Ihstead, the last term in (2) expresses the sum of inté;actions

. betwveen pairs of particles., Thus, thia is a propagator connecting a typical poi{t A

on the world line of particle a with a typicel point B cn the world line of particle b.

——

[

U\is"is a two-point tensor with index 1

A at A and iB at B, It is symmetr%c,'i.e.,

ia * Gigla | | (3)
and satisfies the wave equation |
3 Giigslea T R leﬂzs e S4(n8) 92,\15/(—*-.9“,3 L@

wbere S;A{B is a parallel propagator (cf. Synge 1960) and g(A,B) = ch.n.g;AlGii-

E;ih QG may be formally written (cf. DeWitt end Brehme 1961)

oo . :I
G‘:\‘B - —4_7—: {:A u\ 8 §( Ab) Vinis 6 (sho) )
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where S:B is the square of the distance between A,B measured along the geodesic
(assumed to be unique) joining them. A is given by

O Aa -t [ 4 Sﬁ,;;cl;ia]/ﬁ(ms).

The first term in (5) contains the delta function and describes the part of the

@)

interaction which travels with the speed of light. The second term in (6) contains

a heaviside function and describes the part of the interaction scattered inside the’ﬁf'

—

light cone. 1In flat space ’UH‘A{B = ¢ ,A=! and we get only the first part of —G'—ZAQ;

Although we could describe all electromagnetic phenomena entirely through the

action (2), it is convenient to use the so called direct particle fields. These are

entities defined in terms of particle world lines and the propagators. Thus, we

)
define the 4- potential /\if' at X due to particle a by
' ’ i) » .
= 47 e, j_’ : ah . (7)
Aty - ix i &

The corresponding\direct particle field is given by ) : t,

1) .
F::aicx = Al:xéix - Alxske. - (9)

The formal variational problem in this theory 1s as follows:

fa] ™ - "ions of motion of particles are obtained by the variation of particle
world lines., We get the analogue of Lorentz force from the third term of (2) with the
Adifference that all fields acting oﬁ a typicai particle a afe direct particle fields )
of particles other than a.

{b]. There is no analogue of [b] in this case, as there are no independent entities
cailed fields. The analogue of Maxwell equations is however contained in {(4). The
propagator 1s so defined that all direct particle £ields satisfy the Maxweall equations
identically. Also the gauge contion A{5;==O is satisfied so long as charge is comserved.

{c] Although there is no term in (2) analogohs to the third term in (1), we still

get a non-zero contribulion to the Einstein zquations from the electromagnetic term.

Thi= 1s because the variation of 9-. causes G;‘

. +.  to change. This change can be
K AL B

calculated and the result expressed as an energy mementum tensor of the electromagnetic

. . ) 3 L —(0) | @K (A
,TLK Z 1 _Lﬁm F(-t)lmFlk;— F[.nLF "" _ F“‘ LF b J (c])
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This 1s analogous to ‘the energy momentum tensor of field theory

) - b1 2 ik in ’ il _x
Cem] T 4% [4 9" F Fg-m_ - FF ,(_]. (IO)

When this result was first obtained (Hoyle and Narlikar 1964) it iooked more like

iK

a coincidence., Similar results were obtained in the case ef the C-field (Hoyle and

Narlikar 1964) for the Dirac ffeld (Islam 1966), Howéver, the methods employed

there were of the "slooging' type and did not give insight into the close relationship
between field theories and theories of d1reet interparticle action.

The purpose of this paper is to emphasize this close relationship. To this end
ﬁe will procead in the following way. First we will write down an action for an

arbitrary field. Corresponding to this action we will construct a theory of direct

interpareicle action whicﬁ resembles the original field theory as in the case of

e d
4

electromaonetism described above. For such a correspondence to exist the original

e ..
e

figld theory nust satisfy certain linearity conditions which are generally satisfied

1y hEN

by fields discussed in theoretical physics.

- *

3. FIELDS OF ARBITRARY SPIN
We will first consider tensor fieids of arbitrary rank. Later we will show
how the ealculatien-can be extended easily to spinor fields.
Let $ be a tensor field ef rank N, in interacrion with parrieles. As ir the
electremagnetic case, we will assume that ite properties cen be aerived from an

action :ET of the form

"

J_F' _i‘l':@ j RJ:‘j djrx - Zj’mac(a -+ J’L[‘f’] J—j CL“}C +Z JI [q.)»a] (LQ" (“

Here the third term contains a Lagrangian of the field ¢ and the fourth term describes
the interaction of ¢ with particles. We will now state the conditions L[4], and ]:[43d3
‘nust satisfy to enable us to construct & direct particle interaction theory analogous

to (11).
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1) L Lel is a bilinear invaniant composed of$ and ite first
derivatives., The coefficients appearing in the bilinear form must be functions
of space time geometry.

Thus, for a tensor field Pix L.[‘ﬁ] would be a combination of the form

Ke .mn ikt amip iKL mn
where A,B,C are tensors counected with space time quantities only PR

’
’

In the case of a tensor field of rank N, we can write down a similar expression.

1,

However, to avoid writing down too many suffixes explicitly we use the following conventior

7 Ll '
We will write ¢' to denote 4" 1 4N a2 typical component of ‘# « Thus L_[¢] will
be an expression of the form |
T = A ik . . Tmk . o
{m g » — 13

Summertion convention over repeated indices is understood as usual.‘ As in (12), A,B,C
contain Bix and their derivatives.

{ B i

(1) L L@’,d] is an expression of the form
© 55

g3 S e

where D is a ‘coupling constent and gh)FR is a tensor of rank N depending entirely on
the world line of particle a. | | = l_
It 1is péssible to generalize the conditioﬂs (17) and ({1) further and still maintain
the linearity. However, the expressions (13)-and (14) are sufficient for our pregégt
purposa. Most of the fields discussad in theoretical physics meet these requirements.
The expressions (13) and (14) sre written in an invariant form. This is essential
for any action principle. However, once they are written, we can regroup the different
terms in a2 form more convenien: for calculations.. This will destroy the invariance
of individual terms, but not of the sum of all te;l..s.~ In the foliowing calculation

we will replace all covariant derivatives by ordinary derivatives, and will also

include the factor \f:g' with L [‘b] » Thus we write

j EAINE :fs‘*x' = f L Lél atx | ()
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AAAAAA

m,k

™ Tm ik - | Tk
ILel = ™ b+ p” A I AR S (i)

Note that we h_ave replaced.' 4)5.3& by cf’r—g’k , etc. etc, O(,ﬁ,"/ are no longer tensgrs,
but they still involve only the geometrical.quantities.
As in the electromagnetic case we have ‘three types of variafiqn.
[a] The variation of particle world iines leads to the eqﬁatibn of motion. Thé:""-
second and fou.rth term of (11) contribute to thislvariation. .

[b] The variation of ¢ leads to /the field e ua‘tion for ¢ . ‘ In the case of (16)
q

we have, on variation of o ,

[(Ptﬁi f-f) v ) $1 . ]* - Yzék ¢Z,n + [}’mrﬂ}’z—]m - [_Kzﬁl a(ﬁz.]qi‘
| = EZJL“,()&A)Jmm EﬁAM (

where the indices 1’) L,k .., refer to a general point X and fﬁA to the po'int A on

the world line of a. 9— is a pai‘allel propagator of N éomponents

m i,
[c] The varia..ion of g4y leads to the Einstein field equatio*ms. The third term

1k
of (11) contributes an energy-momentum- tensor T of the ¢ - field., We get
[q] :

Sji cL‘i‘x_
T Tk w7t
=j[3f’“m‘ tr i Fae 70T Pr o dm 89 }’T*JCL’L

In the above variation, only the coefficlents «,p.v are affected since i"l and 4’[
: R ;

\
L—-\
oo
& =\
x
(o %)
$
o
L )
x
X
"

are kept constant. Although the right hand slde of (18) does not appearinvariant,

ik. as a temsor after, BJ)EP,BY have been evaluated. This is

we can always write T
because ji tx 1s an invariant.
We now comstruct a direct particle theory analogous td the above field theory.

As in the electromagnetic case, we look for a suitable propagator connecting a
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—

pair of particle world lines. Since the field%’hasflindices, the propagator G
is a bitensor withﬁJindices at each end. Ve shall denote the propagator

between A and B by .'é;ﬁi My This ie a Green's functlon sat1sfying the equation
. A

wher the suffix A has been suppressed for convenience of wrlt.ing. G: iy is

symm°tric with respect to A,B, i, e.,'/

- —

) m, mg >: G:);n,, mA B . (20)

} We define the direct particle field ¢ X atX due to particle a by
"X

) ~— l“);n-/\ ’ ' -
- CPV—"I‘X = D]Gax—ﬁl,\ § CLQ,. ’ (29

The action déscribing the whole theory can be written down as

J = Ié“tG—; fR\[‘“ me da +Z§j:f G)__ s ta)ﬁ"x,\gtttﬁ»‘aqu.C

Writing

e o - .
4; i /(:Za;a q‘)ﬁﬁ» ' (>3

we can rewrite (2 ) as

—_— ”7} ;.
J léT‘G fR\,/-—j dx - jchla ’*""Z \J(rq '1\~L§- (2‘1}

7)\/\

Thus the thrid term in (24) appears to be analogous to the fourth term of (11) - apart
from the factor 1/2 This feature is common to all direct particle theories.
" We now consider the analogues of the variations [a] - [c¢] in the present case.

(a] The variation of the world line of particle a gives the equation of motion




- - =Y A S - —
e e e e+ R ¥ e S

of a. The “force" contributed by the interaction in the present theory 1s the
same as that from the field theory, with the difference that ¢ 1s replaced by f&-
This 1s obvious form the fact that the force is derived from the fourth term in
(11) and the third term in (24). [The factor 1/2 does not appear in the latter
V<Easé.] Thus in the present theory self-action is excluded.
[b] We define the total direct particle field at x by ) : PrPe
: _"“'(f)‘."‘ T m , @s)
wx %; 3 S ,
It is then easy to see that by virtue of the definiti~on (21), ¢% satisfies
. . mnx .

the equation (17) identically. As in the electromagnetic case, there are no "fields"

to vary, and this identity replaceé the field equation {17).

{c] Finally we consider the variation of g, . This changes the CSE%E; and hence
J«. To evaluate 3 we first consider the variation of (193.
Writing the\"ch_ai?ge in g;’-\st as 3 a;,-‘.x—n-‘s ' we’get,.
. —CF\LK' ;F\ZK;. — : z;’tk a— ;ﬁ?g -_— _L'Iﬁiiﬁ'i(
[(ﬁ. *p )S@’zﬁs il =7 86zagk o R P I Ui

Again we have suppressed suffix X for convenience. We can use the original Green's
function to write down tha solution of (25) in an integral form. This is permitted
provided the changes 83&;: are of first order and we neglect quantities of higher

order of smallnass.. We therefora get 8 G-~ = ~ as
[<]
ml\mB )

8. . = ( Ik AT xl) =— ] +
S Gaym L\SP + 8P Grng i dow

G | Lmr — E ’ +
'}f&rh_’-\ 6}} “’ZRG « CL+3C - JG}‘E e [8? G’Z;‘:‘B])g dlae
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The first and third terms in the above can be rewritten by partial integration.

Assuming ‘that the variations vanish on the surface of the repion of variatloﬁ, we get

trn K F\Z-Ki o ' ra) — ,
8GMAY[¥B f[ +SF ) G;;;“Av—’.;_,r( GZ%B)L

TmK— ' , MmIK __ —
+ 8Y G- - + 8V G ok Brwg

.+ (SO(Zﬁ{ ‘) ~ZEB ] cl+x . V ' . (2.7)

Using (21) we get

ZZ Djf - E(A)WA .skmﬁsata;u, g-

all

~»  Comparison of (28) and (18) shows the similarity of the energy momentum tensorg

in the two theories., The similarity noticed in the electromagnetic case, was theréforé

R

no accident. S ‘ .

In general it is much simplér to calculate the energy momentum tensors in a figld‘
theory. The above result shows ﬁhat in.the corresponding direct particle theory igkis
not necessary to carry through the calculation‘of Séiﬁnﬁé We can arrive at the energy
momentum tensor in this theory by using the followino Tulé:.

In the energy momentum tensor of the fleld theory substitute for ¢2ﬁ. the sum (25).
The tensor then becomes a double sum over particlé palrs. From this sum delete all the

-
"degenerate" pairs, i.e. palrs of identical particles [a,qj . The remaining terms in

the sum represent the enmergy momentum tensor of the analogous theory of direct interparticl
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dction, The deleted terms correspond to the self action.
The above results can be easily extended to spinor fields. This is because

no use was made of the general covariance of the fields. Thus spinor fields could

3

be considered with fhé use of spinor indices in additjon to the tensor ones. The

only foint of difference Fhat arise; in the spinor case 1s that the entity to be

var;ed in [c] is not 95 but thé. 3idﬁ i; related-to Jix .by | ,ﬁﬁ)
giqf’ g;gdﬁ = 2 Y. ‘ 1(2‘1)

-

[In view of the variety of notation in use to describe spinors, it is best to state
that the notation used here is that of Hoyle and Narlikar (1967)]. Although gi“liAcan
" be varied with 16 degrees of freedom, only 10 of these constitute a genuine geometrical

variation. We can express this in the form
S P ‘ i
afihxﬁ = 4 89k 9 xp - Cof9

2

The remaining 6 degrees of freedom correspond to Lorentz transformations, and are not

\-

~.of interest in the present variational problem.

A~ -

Corresponding to (17) we have for spinor fields

Csfdate - - PR 8915 V7T . Gy

L H)
Using (30) we can construct a symmetric 7% .
- : £41 |
= ¢ . P 32
T -2 [ I g P + J % ' (")

The same result carries through for direct particle theoriles.

4. CONCLUSION

The work of the previous section shows that provided the conditions 1), ({i) are
satisfied, there exists a direct particle analogue of every field theory. That thesa
conditions are necessary is seen from the fact that such a correspondence does not

exist where L 1is not a bilinear of the form (16), or I is not of the form (14). A
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notable example of this is a Dirac field in interaction with a scalar field. The

interaction term ivaTPVNf . This 1s linear in<® but not in ¥ . We therefore cannot

express ¥ as a direct particle field. This difficulty was encountered by Islam (1967)

in his discussion of the Dirac field. The difficulty is removed if we regard ¢ alone

as a direct particle fleld and treat¥Vas an entity specifying the particle. Then ij'
: EHETE
om V 4

can be treated as § 1in (14). [ of Hoyle and Narlikar 1967] !

The correspondence considered in this paper is confined entirely to classical
e

physics. As yet no progress has been made towards understanding the quantum nature
of direct interparticle action. The quantum theory of fields, on the other hand, ?as
been studied extensively. Although it has produced several results in agreement with

experiments, <he quantum field theory cannot be regarded as a perfect theory. The :
P ) q y ' 8: P nE L

© o

difficulties of self-action and vacuum polarization are only too well known. qubaps

~

these difficulties will disappear when we have a proper understanding of the quan;gm

theory of direct interparticle action.
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